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Summary. We identify a family of discounted dynamic optimization problems in 
which the immediate return function depends on current consumption, capital input 
and a taste parameter. The usual monotonicity and concavity assumptions on the 
return functions and the aggregative production function are verified. It is shown 
that the optimal transition functions are represented by the "quadratic family", 
well-studied in the literature on chaotic dynamical systems. Hence, Jakobson's 
theorem can be used to throw light on the issues of robustness of ergodic chaos and 
sensitive dependence on initial conditions. 

O. Introduction 

It is by now well-known that a variety of models in economics gives rise to discrete 
time, non-linear processes of the form 

x~ + 1 = h(x,) (0.I) 

where the function h satisfies the Li-Yorke condition for "chaotic" or "complex" 
behavior. Besides the relative abundance of examples of chaos, yet another theme 
has rightly been stressed: quite simple models of economic theory may lead to such 
examples. 

While formal results on chaotic processes have been derived primarily in the 
last ten years or so, interest in non-linear difference equations can be traced back at 
least to Samuelson's Foundations (pp. 302-310). Interestingly enough, Samuelson 
also speculated on a theory of comparative dynamics, which will "include the theory 
of comparative statics as a special case", but "will cover a much richer terrain." The 
central notion of comparative dynamics is that "we change something, and 
investigate the effect of this change on the whole motion or behavior of the economic 
system." The changes Samuelson talked about included (i) changes in initial 
conditions and (ii) changes in some parameter affecting the system. To this effect 
we can explicitly introduce a "parameter" # and study a family of dynamic processes 

X , + l  = G(x,). (0 .2)  
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Now, admitting the possibility or even pervasiveness of complicated behavior, 
one can ask a natural question of interest to mathematical modelling of social 
phenomena: "to what extent is chaotic behavior robust?" If a process like (0.1) 
displays complexity due to some accidental matching of parameters, then clearly 
one need not take such behavior seriously. More generally, given a particular 
definition of complicated behavior, if the family (0.2) displays such behavior for a 
"negligible" set of parameter values, one can argue that the "typical" model is still 
"well-behaved". 

In this paper we continue the investigation of the properties of optimal programs 
in discounted dynamic optimization models studied earlier (Majumdar and Mitra 
(1991)). Our focus is primarily on ergodic chaos. We attempt to throw light on 
the issue of its robustness by using a parametric variation approach in the spirit 
of (0.2). A family of discounted dynamic optimization problems is identified in which 
the one period return function depends on current consumption, capital input and 
some taste parameter p. It is shown that this family of optimization problems gives 
rise to the dynamical system represented by the "quadratic family"; that is, for each 
value of the parameter #, the optimal transition function is given by hu(x)= 
#x(1 - x). 

Using this result, it is shown that the set of parameter values 9enerdtin9 optimal 
programs that display ergodic chaos has positive Lebesgue measure. The basic 
mathematical result that we apply is due to Jakobson (1981) [see also Benedicks 
and Carleson (1985) and Carleson (1991)]) 

By using Jakobson's theorem one can also throw light on the issue of sensitive 
dependence of the processes (0.2) on initial conditions in the strong sense of 
Guckenheimer (1979). Roughly speaking, for a given value of/l,  the process (0.2) 
possesses sensitive dependence on initial conditions if there is some positive number 
such that in every neighborhood of an initial x there exists a point such that its 
image under a finite number of iterations separates from that of x by that positive 
number. Here, again, the size of such a set of initial conditions can be an issue: if it 
is of Lebesgue measure zero, it is "negligible". The definition of Guckenheimer 
requires that such sensitivity holds on a set of initial conditions with positive 
Lebesgue measure. Jakobson's result also implies that the set of parameter values 
generating optimal proyrams that display GuckenheimeFs sensitive dependence has 
positive Lebesgue measure. 

This quadratic family of maps has been the focus of attention of "bifurcation 
analysis", which examines, roughly speaking, how the limit sets (asymptotic 
behavior) of a family of dynamic processes (like (0.2)) change as the parameter/ l  
changes. Given this literature (emphasizing especially the "period-doubling route 
to chaos") our family of dynamic optimization problems allows us to also 

t The question of whether the family of dynamic optimization problems displaying robust ergodic chaos 
is itself non-negligible in an appropriate class of dynamic optimization problems is an important one. 
We do not pursue this question in this paper. It is worth noting, though, that Jakobson's result actually 
holds for some families of maps "close to" the quadratic family in the C 3 metric. (see Jakobson 
(1981, p. 40)). This suggests that the answer to the above question might be in the affirmative in a 
"sufficiently smooth" class of dynamic optimization problems. 
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explore - in the spirit of Samuelsonian comparative dynamics - how the long-run 
behavior of optimal programs undergoes qualitative changes as the taste parameter 
p varies. 

In Section I we collect some definitions. The family of dynamic optimization 
problems is formally set up in Section II. The main result on robustness of ergodic 
chaos and sensitive dependence on initial conditions is presented in Section III. The 
steps needed to show that the dynamical system generated by this family of dynamic 
optimization problems is given by the quadratic family involve some detailed 
calculations and verifications (more refined than those in Majumdar and Mitra 
(1991)). These are relegated to an appendix. 

It should perhaps be stressed that while we use an explicit parametric variation 
in the spirit of (0.2) in this paper, our earlier result on robust topological chaos 
rested on varying the one period return and production functions on an open set 
in the function spaces (and the discount factor on an open interval). We note that 
while the question of robustness of topological chaos has been discussed in a few 
other environments, we do not know of any attempt to characterize robust ergodic 
chaos or sensitive dependence. A complete list of related reference is already given 
in Majumdar and Mitra (1991), which contains a detailed economic interpretation 
of the basic model. 

I. Technical preliminaries 

Consider a probability space (X,~,,v) and a Z-measurable map h : X ~ X ;  v is 
invariant under h if v(E) = v(h- I(E)) for all EEL'; v is ergodic if "EE22, h-  I(E) = E" 
implies "v(E) = 0 or v(E) = 1". Let X be a closed interval [e, fl] of the real line with 

< ft. We say that h: X ~ X exhibits ergodic chaos if there is an ergodic invariant 
measure that is absolutely continuous with respect to the Lebesgue measure. It is 
known, for example, that 

h(x) - 4x(1 - x) 

exhibits ergodic chaos. 
If x s X ,  the sequence ~(x) -  (hJ(x))~~ is called the trajectory from (the initial 

condition) x. The orbit from x is the set ?(x) = {y: y = hJ(x) for some j > 0}. The 
asymptotic behavior of a trajectory from x is described by the limit set, which is 
defined as the set of all limit points of 7(x), and is denoted by co(x). 

A point x e X  is a fixed point of h if h(x) = x. A point x e X  is called periodic if 
there is k _> 1 such that hk(x) = x. The smallest such k is the period of x. Note that 
i f x e X  is a periodic point, then co(M(x)) = 7(x) for everyj  = 0, 1 . . . . .  A periodic point 
s  is stable if there is an open interval V (in X) containing if, such that co(x) = 7(~) 
for all x e  V. [In this case we also say that the periodic orbit 70c) is stable.] 

Consider the iterations 

h~ = x 

The process 

and hk(x)=h[hk-l(x)] fork_>l .  (1.1) 

x,+l =h(xt) (1.2) 
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has sensitive dependence on initial conditions (Guckenheimer  (1979)) if there are a 
set Y c  X of positive Lebesgue measure  and  an e > 0 such that  given any xr  Y and 
any ne ighborhood  U of x, there is y ~ U  and n > 1 such that  [h"(x) - h"(y)l > e. 

To  address the question of robustness,  let (hu) be the "quadra t ic"  family of  maps,  
where I t sA = [1, 4] and hu: [0, 1] ~ [0, 1] is defined as: 

h . ( x )  - I t x ( 1  - x ) .  (1.3) 

Let A = {#~A: h u exhibits ergodic chaos}. The basic result of Jakobson  characterizes 
this set A: it is uncountable  and non-negligible. More  precisely, let us state: 

Jakobson ' s  Theorem (Theorem B and remarks  on p. 40 of J akobson  [1981 ]): 
The set A,  such that for  each I t~A the map h u exhibits ergodic chaos, has positive 
Lebesgue measure; also, h u has sensitive dependence in the sense of  Guckenheimer. 

The following result f rom bifurcation analysis summarizes  the per iod-doubl ing 
route to chaos  for the family of maps  (1.3). 

Bifurcation Theorem 
There is a sequence (itk)ff= 0 of  bifurcation values of  It, such that 

(i) Ito = 1, itk < itk + l for  k = O, 1, 2, 3 . . . .  
(ii) Itk~itoo as k ~ oo, where Itoo ~- 3.569946. 

(iii) For It~(#k, Itk+ 1), there is a stable periodic point x(it), with period 2 k, such that 
for  almost every x r X ,  co(x) = ?(x(it)). 

II. A family of dynamic optimization problems 

We consider a family of in ter tempora l  economies,  indexed by a pa rame te r  It, where 
#~A = [1,4].  Each economy in this family has the same production function, 
f :  ~ + -~ ~ + and the same discount factor 6~(0, 1). The  economies in this family differ 
in the specification of their welfare functions, w: 9~2+ • A - - , ~ +  [depending on the 
pa rame te r  value of #~A that  is picked].  

The  following assumpt ions  on f a r e  used: 

(F .1)  f(O) = O. 
( F.2 ) f is non-decreasing, continuous and concave on ~R +. 
( F.3 ) There is K > O, such that f (x) < x for  all x > K, and f ( x )  > x for  all O < x < K. 

A program f rom x > 0 is a sequence (x,) satisfying 

Xo=X,  O < x , < f ( x ~ _ O  f o r t _ > l  

The consumption sequence (c,), generated by a p rog ram (xt) is given by 

ct = f ( x t _  x) - xt ( > 0) for t > 1 

It  is s tandard  to verify that  for any p rog ram (x,) f rom x > 0, we have x~, 
ct+ 1 < K(x) = max  (K, x) for t > 0. 

Given any #CA, the following assumpt ions  on w(., It) are used: 

( W.1) w(c, x, It) is non-decreasing in c given x, and non-decreasing in x, given c. 
( W..2 ) w( c, x, It) is continuous on ~R 2+ . 
(W .3 )  w(c,x,  it) is concave on ~R2+. 
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In defining"optimatity" of a program, we note that the notion has to be economy 
specific. Since we can keep track of the economies by simply noting its p value, we 
find it convenient to refer to the appropriate  notion of optimality as p-optimality. 

Given any #~A, a program (2t) from x > 0 is p-optimal if 
co oo 

6'w(~, +1,2,, p) -> ~ ~'w(c, § ~,, p) 
t = O  t = O  

for every program (x,) from x. 
Define a set Y c 912+ by 

Y= {(c, x)e912+:c _< f(x)}  

For  much of our discussion of p-optimal programs, what is crucial is the behavior 
of w(.,p) on Y(rather than on 91~). We now proceed to assume: 

(W.4)  Given any peA,  w(c, x,#) is strictly increasing and strictly concave in c given 
x, on the set Y. 

Standard arguments ensure that given any peA,  there is a p-optimal program 
from every x > 0. Assumptions (F.2), (W.3), and (W.4) ensure that a p-optimal 
program is unique. 

Given any peA,  we define a value function, V: 91+ x A -.91 by 
co 

V(x ,  p) = Z ~'w(~,+ 1,)t,, p) 
t = O  

where (2t) is the p-optimal program from x > O. 
Since there is a unique p-optimal program from every x >_ O, one can define an 

optimal transition function h: 9t+ x A ~ 91+ by 

h . ( x )  = 21 

where (2,) is the #-optimal program from x > 0. It is easily checked that this 
definition also implies that for all t > 0, we have 

~, + 1 = h . (2 , )  

III. A family displaying robust ergodic chaos and sensitive dependence 

Consider now a family of economies, where f ,  ~ and w are specified as follows: 

f ( x ) = ~ ( 1 6 / 3 ) x - 8 x 2  +(16/3)x" for xE[0,0.5] 
(3.1) 

tl for x > 0.5 

= 0.0025 

The function w is specified in a more involved fashion. To case the writing, 
denote L = 98, a -= 425. Also, denote by I the closed interval [0, 1], and define the 
function 0: I • A --* I by 

O(x,p)=px(1 - x )  for xEI, pEA 
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a n d u : l  2 •  

u(x,z ,p)  = ax - 0.5Lx 2 q- zO(x,p) - 0.5z 2 - 3[az - 0.5Lz 2 -1- 0.50(z, ]A) 2] (3.2) 

Define a set D c I z by 

D =  {(c,x)e91+ x l :c  <_f(x)} 

and a function w: D x A ~ 9t + by 

w(c, x, #) = u(x, f ( x )  - c, #) for (c, x ) s D  and #eA (3.3) 

We now extend the definition of w(.,/a) to the domain Y. For  ( c , x ) e Y  with 
x > 1 [so that f ( x )  = 1, and c _ 1], define 

w(c, x, p) = w(c, 1, #) (3.4) 

Finally, we extend the definition of w(., #) to the domain 912. For  (c, x)e912 with 
c > f (x ) ,  define 

w(c, x, #) = w(f(x),  x, #) (3.5) 

It can be checked (see Appendix A) that for the above specifications, f satisfies 
(F. 1)-(F. 3), and given any # e A, w(., #) satisfies (W. l) (W.4). 

We observe that w(c, x, #) >_ w(0, 0,/J)[by (W. 1)] = u(0, f(0) - 0,/0 = u(0, 0,/~) = 0, 
for all (c,x)e91~. Thus w(.,/~) maps from 912+ to 91+. Also, for all (c,x)E91~, 
w(c,x ,#)  < w(c, 1,/~) < w(f(1), 1,/a) = w(l, 1,#). 

We verify (in Appendix B) the following: 

Theorem 3.1 

The optimal transition functions for the family of  economies ( f  , w(., #), 6) are 9iven by 

hu(x) =/~x(1 - x) for all x e I  (3.6) 

Hence, by Jakobson's Theorem, the family exhibits robust eryodic chaos and sensitive 
dependence on initial conditions. 

Using (3.6) of Theorem 3.1, and applying the Bifurcation Theorem, we can conclude 
that as the taste parameter/~ changes, for instance, from 1 < # < / q  to #1 < # </~2, 
the long-run behavior of the typical optimal program changes from convergence to 
a stable fixed point of hu(x) to convergence to a stable periodic point of period two. 
That is, the long-run dynamic behavior of optimal programs experiences a 
bifurcation (a distinct qualitative change) as the taste parameter/~ crosses the value 
#1. The same is, of course, true of the other bifurcation values/z k for k > 1 as each 
successive bifurcation value gives rise to a stable periodic point of a periodwhich 
is double that of the previous bifurcation value. 

Appendix A 
Verification of the assumptions 

The production function 

Recall that the production function, f :  91 + -~ 91 + is given by 
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f ( x ) = { ~  6 / 3 ) x - 8 x z  + (16/3)x4 forf~ xe[0,0.5)x > 0.5 

N o t e  tha t  f (0 )  = 0 ,  and  f ( x ) ~  1 as x T(1/2), so tha t  f is clearly con t inuous  on 91+. 
Next ,  note  tha t  for 0 < x < 0.5, f is C 2, and  

f ' ( x )  = (16/3) - -  16x + (64/3)x 3 

f " ( x )  = - 16 + 64x 2 

As x$(1/2),  f ' ( x ) ~ O .  Thus, we can conc lude  tha t  f is C 1 on 91+. As xT(1/2), 
f"(x)--* O, so repea t ing  the above  a rgument ,  f i s  C 2 on 91+. It  is c lear  tha t  f " ( x )  < 0 
for 0 < x < 0.5, and  so f ' ( x )  > 0 for 0 < x < 0.5 [since f ' ( 1 /2 )  = 0]. Thus,  f is 
non-decreas ing  and  concave  on 9t +. 

To  verify (F.3), note  tha t  the concavi ty  o f f  and  f (0 )  = 0 ensure tha t  [ f ( x ) / x ]  is 
non- increas ing  for x > 0. Since f (1 /2 )  > (1/2), we have f ( x )  > x for 0 < x < (1/2). And  
for (1/2) < x < 1 , f (x )  = 1, so f ( x )  > x for (1/2) < x < 1 as well. Thus,  defining K = 1, 
we have f ( x )  > x for 0 < x < K, and  f ( x )  = 1 < x for all x > K. 

W e  now note  an i m p o r t a n t  p r o p e r t y  o f f ,  viz, 

f ( x )  > O(x,#) for all x e I ,  p E A  

Since f ( x )  = 1 for xe [0 .5 ,  1], and  O(x,#)~l  for all x~I ,  p e A ,  we have f ( x )  > O(x,#) 
for x~[0.5 ,  1] and  p e A .  

We now examine  the case where x~[0 ,0 .5 )  and  #~A.  Clear ly  0 ( 0 , # ) = 0  and 
f (0 )  = 0, so f ( x )  >_ O(x, fl) for x = 0, # c A .  F o r  0 < x < 0.5, define 

fl(x, #) = I f ( x )  - O(x, fl)]/x 

Then fl(x, #) = ((1 6/3) - #) - (8 - #)x + (1 6/3)x 3 and O l fl(x, p) = --(8 --/~) + 1 6x 2 < 0 
for 0 < x < 0.5, and  fl(., p) is a decreas ing funct ion on  (0, 0.5). As x T(1/2), fl(x, #) 
2 - (/~/2) > 0. Thus,  fl(x, #) > 0 for 0 < x < (1/2). This means  f ( x )  > O(x, p) for 
0 < x < (1/2). 

The welfare function 

Recall  tha t  u:l  2 x A ~ 91 was defined by  

u(x, z, #) = ax - 0.5Lx 2 + zO(x, p) - 0.5z 2 - 6[az - 0.5Lz 2 + 0.50(z, #)2] 

We can compu te  the fol lowing derivat ives:  

D l u ( x , z , # )  = a - L x  + z#(1 - 2x) 

D2u(x , z,/~) = #x(1 -- x) -- z -- 6a + 6Lz -- 6#2z + 36/.t2z 2 --  26kt2z 3 

DI lu(x, z, p) = - - L - -  2#z 

D 12 u(x, z, #) = #(1 --  2x) = O 21 u(x, z, #) 

Dz2u(x, z, #) = - 1 +  6L -- 6# 2 + 66#2z - 66#2z 2 

Recall  tha t  D c 12 was defined by  

D = {(c,x)e91+ x I :c  _ f ( x ) }  
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and w: D x A ~ 9 / b y  

w ( c , x ,  it) = u ( x , f ( x ) -  c, it) for ( c , x ) e D  and It~A 

We check, first, that  w(., It) satisfies (W. 1)-(W.4) on D, given any IteA. Clearly w(., It) 
is C 2 on D, and we check below that w(., It) is strictly increasing in c (given x) and 
in x (given c), and strictly concave in (c, x) on D. The first partials of  w are: 

D l w(c ,  x ,  It) = - D 2 u ( x , f  (x) - c, It) 

D2w(c ,  x ,  It) = O l u ( x ,  f ( x )  --  c, It) + D z u ( x ,  f ( x )  - c, I t ) i f ( x )  

Now, D z u ( x , f ( x  ) - c, It) <_ (it/4) -- 6a  + 6 z ( L  - It2) _ z + 36it z 

< (it/4) -- 6a + 36it z [since 6(L - Itz) < 1-] 

< (it/4) -- 6 [ a  - 3it z] 

< 0 [since 6 [ a  - 3it 2] > (W4)] 

Thus, D l w ( c ,  x, It) > 0 for (c, x ) ~ D  and It~A. Also, D~u(x ,  z, It) > a - L - It > 323 and 

D2u(x ,  z, It) > - 6a --  z + 6 z ( L  - It2) + OitZz2(3 _ 2z )  

> - 6a - z (since L > It2) 

_> - 2.0625 > - 3 

and f ' ( x )  _< f ' (0 )  = (16/3). Thus, D z u ( x ,  z, I t ) i f ( x )  >_ - 16, and so D z w ( e ,  x ,  It) >_ 
323 . -  16 > 0. Using the signs of the first partials of  w, we conclude that  w(.,it) is 
strictly increasing in c (given x) and in x (given c) on D. 

The second partials of w are: 

D 1 lw(c ,  x, It) = D22/~(x ,  f ( x )  -- c, It) 

D l zw(c ,  x ,  It) = --  D z l  u ( x , f ( x  ) - c, It) --  D22u(x ,  f ( x )  --  c, I t ) i f (x )  

= D z l w ( c , x ,  it) 

D 2 2 w ( c  , x ,  It) = D 1 l u ( x , f ( x )  --  c, It) + D 1 2 u ( x , f ( x  ) - c, # ) i f ( x )  

+ [DE lU(X, f ( x )  --  C, It) + DzzU(X,  f ( x )  -- c, I t ) f ' ( x ) ] f ' ( x )  

+ D2u(x ,  f ( x )  --  c, I t ) f  "(x) 

Now, D 2 ~ u ( x , z ,  it) < - 1 + 6 L  + 66itZz < --  1 + 6 (L  + 96) < --0.5 < 0, so we have 

D ~ w ( c , x ,  it) < 0 

Also, 

(01 l w ) ( O 2 2 w )  - (O12w) 2 = (D22u) (01  lu) + 2 ( D a 2 u ) ( O 2 2 u ) f ' ( x )  

+ (O22u)2 f ' ( x )  2 + (O22u) (O2u) f " ( x )  - (D12u) 2 

- (D22u)2 f ' ( x )  2 - 2 ( D 1 2 u ) ( D 2 2 u ) f ' ( x  ) 

= ( D 2 2 u ) ( D l l u )  - (D12u) 2 + ( D 2 2 u ) ( D 2 u ) f " ( x )  

Now, D 2 2 u ( x , z ,  it) >_ - 1 + 6 [ L  - It2] > _ 1 
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and 0 > D2u(x , z,/1) > - -2 .0625,  as we checked above.  Further ,  f " (x )  = - 16 + 64x z 
for 0 < x < (1/2), so 0 > f " ( x )  > - 16 for x~I. These est imates imply that  

(D2u)(D22u)f"(x) > -- 33 

We also have Dl lu (x , z ,p )<  - L  <O and D 2 2 u ( x , z , p ) < - 0 . 5 < O ,  while 
[D12u(x, z, #)]2 = #2(1 _ 2x)2 < #2 < 16. These est imates imply that  

(D 1 lU)(022 u) - (D12u) 2 > (L/2) - 16 = 33 

Thus,  (D 1 xw)(D22 w) -(Olzw)2 > 3 3 -  33 = 0 and w(-, It) is strictly concave on the 
set D. 

We have now checked that  w(-, kt) satisfies (W.1)-(W.4) on D, given any #~A. 
Fur thermore ,  w(',  It) is C 2 on D. 

Recall that  Y c  ~R3+ was defined by 

Y =  {(c,x)~9t2+ :c _< f (x )}  

and  w was extended f rom D to Yby defining for (c, x)E Ywith x > 1 [so that  f ( x )  = 1, 
and c < 1], a n d / ~ A ,  

w(c, x, It) = w(c, 1, It) 

We now check that  w(-,it) satisfies (W.1)-(W.4) on Y, given any  I teA. Note  that  
w(., It) satisfies (W. 1) and (W.2) on Y. To  check that  w(.,/~) satisfies (W.3), let (c, x) 
and  (6, if) belong to Y, and  let 0 < 2 < 1. Then  w(~(c, x) + (1 - 2)(~, :~), It) = w(2c + 
(1 - 2)6, 2x + (1 - 2)~, It). Now,  [2c + (1 - 2)~, 2x + (1 - 2)~] ~D if [2x + (1 - 2)~] < 1. 
If  x and  ff are bo th  < 1, then concavi ty  of  w follows f rom concavi ty  of  w 
on D. So consider,  wi thout  loss of  generality, that  x > 1 while ff < 1. Then 
w(2x + (1 -- 2)~, 2c + (1 - 2)6, It) > w(2 + (1 - 2)~, 2c + (1 - 2)6, It) [using (W.2)] >_ 
2w(1, e, It) + (1 - 2)w(2, ?, It) [since (1, c) and  (~, c) belong to O] = 2w(x, c, It) + 
(1 - 2)w(~, 6, It). If  [2x  + (1 - 2)~] > 1, then w(2c + (1 - 2)~, 2x + (1 - 2)if, It) = w(2c + 
(1 - 2)~, 1, It) > 2w(c, 1, It) + (1 - 2)w(6, 1, It) [since (c, 1)eD and (~, 1)eD] > 2w(c, x, #) + 
(1 - 2)w(6, ~, It). Thus,  w(-, It) satisfies (W.3) on Y. 

T o  check (W.4), let x > 0 be given. Then  if x _< 1, w(c, x, It) is strictly increasing 
and strictly concave in c. If  x > 1, w(e, x, It) = w(c, 1, It), which is strictly concave and 
strictly increasing in c. 

Recall that  w(', It) was extended f rom Y to 9~ 2 by defining for (c, x)eg~ 2 with 
c > f (x) ,  and I teA,  

w(c,x, It) = w(f(x) ,  x, It) 

We now check that  w(-,#) satisfies (W.1)-(W.4), given any  #~A. Note  tha t  w(.,it) 
clearly satisfies (W.1), (W.2) on ~R2+. T o  check (W.3), let (c, x) and  (~, ~) be in ~R2+ and 
let 0 < 2 < 1. Then,  

w(2(c, x) + (1 - 2)(6, x) ,  It) = w(2c + (1 - 2)e,  2 x  + (1 - 2)~,  It) 

Denote  min[c , f (x )]  by G(c,x); min [~ , f ( f f ) ]  by  G(6,~) .  Then, we have w(2c + 
(1 - 2)6, 2x + (1 - 2)Y, It) >_ w(2G(c, x) + (1 - 2)G(?, Y), 2x + (1 - 2)~, It). Also 2G(c, x) + 
(I -- 2)G(~, if) < 2f (x)  + (1 -- 2)f(X) < f ( 2 x  + (1 -- 2)~). Further ,  G(c, x) < f ( x )  and 
G(6, if) < f (~) .  Thus,  (G(c, x), x), (G(6, 2), ~), and [2G(c, x) + (1 - 2)G(~, ~), 2x + 
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(1 --2)~] all belong to Y and so we have 

w(2c + (1 - 2)~, ~x + (1 - )0~, ~) -> ~w(G(c, x), x ,  ~) + (1 - ,~)w(G(~, ~), 2, ~). 

If  min(c, f ( x )  ) = c, then w(G(c, x), x ,  la) = w(c, x ,  #); if min (c, f ( x )  ) v~ c, then c > f ( x ) ,  
and w(G(c, x), x ,  #) = w ( f ( x ) ,  x ,  #) = w(c, x ,  #); thus, in either case, w(G(c, x), x ,  #) = 
w(c, x,  la). Similarly, w(G(~, 2), 2, #) = w(g, 2, #). Hence,  2w(G(c, x), x ,  I~) + (1 - 4) x 
w(G(g, ~, la)) = 2w(c, x ,  I a) + (1 - 2)w(~, 2, p), complet ing our  demons t ra t ion  of the 
concavi ty  of  w(-, fl) on N2+. 

Appendix B 
Verification of optimal transition function 

The verification of the opt imal  transit ion function is obta ined  by following closely 
the technique of B o l d r i n - M o n t r u c h h i o  (1986). 

Define q~: 12 x A ~ 9t by 

(o(x, z, #)  = ax  - 0.5 L x  2 + zltx(1 - x) - 0.5 z 2 

We can compute  the following derivatives: 

Dxc~(x , z , i  a) = a - L x  + z/~(1 - 2x) 

D2dp(x,z,  la ) = px(1 - x) - z 

Dx 1 ~(x, z, #) = - L - 2pz 

O 12 r z, #) =/~(1 -- 2x) = D21 (j~(x, Z, #) 

D22qS(x,z)l = -- 1 

Looking  at the Hessian matr ix  of  q~(',/~), we note that  

D l l d ~ ( x , z , # ) < O  [ s inceL > 0] 
and 

(011~b)(O2zq~) - (012q~) 2 = L + 2#z - [/~(1 - 2x)] 2 > 0 
[since t l - 2x[ < 1 and I#[ -< 4, and L > 16] 

Thus  q~(., #) is strictly concave on 12. 

Result 1 
Given any  x ~ I ,  O(x, I~) - #x(1 - x)  solves the problem: 

M a x  ~b(x,z, #) ~ 

Subject to z e l )  (P) 

Furthermore ,  this solution is unique. 

Proof 
Clearly, O(x, p ) ~ I  for all x ~ I  and #cA.  Fo r  any z ~ l  with z ~ O(x, #) we have by the 
strict concavi ty  of  q~(-, #) on 12, 

~b(x, z, I.t) - dp(x, O(x, #), #) < D2q~(x, O(x, la), #)(z -- O(x, I.t) ) = 0 

Thus,  O(x, la) uniquely solves p rob lem (P). 
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Define r  x A---,I by 

@(x,p) = 4)(x ,O(x,p) ,p)  for (x ,p )E1  • A 

Then, by the definition of 4) and 0, 

~l,(x, p) = ax  - 0.5 L x  2 + O(x, p)Z _ 0.50(x, p)2 = ax  - 0.5 L x  z + 0.50(x,/~)2 

Note  that by the definition of u(x, z, #), 

u(x, z, p) = ax  - 0.5Lx I + zO(x, p) - 0.5z z - 6[az  - 0.5 L x  2 + 0.50(z, #)z] 

: 4)(x, z, ~) - aO(z, ~) 

for ( x , z )E I  2 and peA.  

Result 2 
Given any x E l ,  (i) O(x, p) solves the problem 

Max u(x, z, p) + 6O(z, l~) ~ 

Subject to zE l  ) (Q) 

and (ii) ~(x, p) = Max [u(x, z, p) + ~O(z, p)]  

Proof 
We have u(x, z, p ) +  6~(z,  p ) =  ~b(x, z, p) by definition of u. Thus (i) follows from 
Result 1. 

Using (i), we get 

Max [u(x,  z, ~) + 6~(z,  p)]  = u(x, O(x, p), p) + 6~(O(x, p), p) 
za l  

= 4)(x, O(x, #), #) [by definition of u] 

= O(x, p) [by definition of ~ ]  
This proves (ii). / /  

Consider  a sequence (Xt)o ^ co defined by 2o = x e l ,  2,+1 = 0(2,,p) for t _ > 0. Notice 
that 2 ,EI  for t > 0. Also, for t > 0, 

~,(~,, p) = q~(~,, 0eft, p), p) 

= q~(~,,.,e,+ ~, ~) 

= .(~,, ~,+ 1,#) + a4,(~,+ 1, p) 

Thus, iterating on this relation, 
T 

I~(X,/A) = Z atu(x,, 2~,+ 1, #) ''[- 6T~/(XT+ 1, P) 
t=O 

Since ~b(.,/~) is bounded on I and u(., p) is bounded  on 12, and 0 < ~5 < 1, we get 
co 

,/,(x,p)= y, 6'u(~,,~,+l,p) (1) 
t=O 

Consider,  next, any sequence (x,)~ defined by Xo = x e I ,  (x,, Xt+l)e/2 for t _> 0. 
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Then,  by using Result  2, 

O(x,, p) >_ u(x,, x,  + ~ , p) + a0(x,+ 1, ~) 

I te ra t ing  on this re la t ion  
T 

~,(x,#) _> y,  6'u(xt, x ,+l ,p)  + a r ~ ( x r +  l,  p) 
t = 0  

Again,  using the boundedness  of u( ' ,  p) on 12 and  of  ~,(., #) on  I, a n d  0 < 3 < 1, 
oo 

0(x,#)_> y~ a 'u (x , , x ,+ , ,p )  (2) 
t = 0  

Given  (1) and  (2), and  the strict concavi ty  of u(., #) on 12, we can conclude  

k 6'u(2,, 2,+ 1, p) = 0(x,  p) > y~ a'u(x, x,+ t, p) (3) 
t = 0  t=O 

for every (x,)~ satisfying Xo = x, (x,, x,+ 1)r  2 for t > 0, and  x, # ~, for some t _> 1. 

No te  tha t  (2,) is a program from x r  since 2o = x ,  2 , > 0  for t >  1 and  
2 t = 0(2,_ 1,p) ~ f ( 2 t _ l )  for t > 1. Also, by defini t ion of w, we have 

co 

3'w(f(2,)  - 2, +1,2,, p) = ~ 6'u(2,, 2, +1, P) (4) 
0 0 

If (x,) is any p r o g r a m  from x~l ,  then x o = x, x ,~ l  for t > 0, and  
oo co 

6tw(f(x,)  - x,+ ,, x,, p) = ~3'u(x , ,  x,+ l, #) (5) 
0 0 

Using (3), (4) and  (5), we conclude  tha t  
co co 

Z (~tw(er + 1,2~t, P) > E 15tw(ct + 1' Xt, ]2) ( 6 )  

o o 

for every p r o g r a m  (x,) from x, for which x, 4: 2, for some t >_ 1. Thus  (2t) is the unique  
p -op t ima l  p r o g r a m  from x. Consequent ly ,  the op t ima l  t rans i t ion  funct ion h,(x) 
satisfies 

hu(x) = #x(1 - x) for all x~I ,  p e A  
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